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Fig. 1. We present SRBTrack, a general controller that enables a Single-Rigid-Body character to generate diverse full-body motion adaptive to versatile
environments. Our framework can be used for a wide range of applications, including plug-and-play motion tracking, robust adaptation to unseen terrains
and perturbations, and generalizable full-body motion synthesis.

Generating realistic and robust motion for virtual characters under complex
physical conditions, such as irregular terrain, real-time control scenarios,
and external disturbances, remains a key challenge in computer graphics.
While deep reinforcement learning has enabled high-fidelity physics-based
character animation, such methods often suffer from limited generalizability,
as learned controllers tend to overfit to the environments they were trained
in. In contrast, simplified models, such as single rigid bodies, offer better
adaptability, but traditionally require hand-crafted heuristics and can only
handle short motion segments. In this paper, we present a general learning
framework that trains a single-rigid-body (SRB) character controller from
long and unstructured datasets, without the reliance on human-crafted
rules. Our method enables zero-shot adaptation to diverse environments
and unseen motion styles. The resulting controller generates expressive and
physically plausible motions in real time and seamlessly integrates with
high-level kinematic motion planners without retraining, enabling a wide
range of downstream tasks.
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1 Introduction
Generating physically realistic motion for virtual characters under
challenging conditions remains a core problem in computer graph-
ics—particularly for interactive character animation in games and
AR/VR applications. These conditions include irregular terrain, real-
time interactions between users, characters, and the environment,
as well as unpredictable external disturbances. In such scenarios,
characters must maintain both physical plausibility and motion fi-
delity across diverse and dynamic settings. The introduction of deep
reinforcement learning (DRL) to control simulated characters has
enabled a wide range of adaptive and physically accurate motions.
Physics-based methods excel at producing motions that are con-
sistent with physical laws. They enable characters to interact with
varied scenes, manipulate objects, and withstand external distur-
bances—achieving realistic contacts and fluid interactions beyond
the reach of kinematic approaches. However, this realism comes
at a cost: character controllers trained with DRL tend to be tightly
coupled to the specific environments in which they were developed.
For instance, a full-body controller trained only on flat terrain often
fails to generalize to uneven surfaces or unexpected perturbations
without further environment-specific fine-tuning [Rempe et al. 2023;
Tessler et al. 2024; Won et al. 2022a]. This limits the practical de-
ployment of such methods in games and other real-world scenarios.

An alternative and orthogonal approach to full-body simulation
is the use of simplified models. By abstracting the full body dy-
namics into a reduced representation such as a single rigid body
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model [Kwon et al. 2023; Winkler et al. 2018], it becomes possible to
capture key physical characteristics of character movements, includ-
ing contact forces and the resulting momentum. This abstraction
also enables the development of learned policies that can adapt to
various unobserved environmental changes and controller transi-
tions without requiring additional training.

Despite the many advantages of simplified model methods—such
as robustness and sample-efficient learning—previous approaches
have often depended heavily on human expertise. For instance, they
typically require manually tuned stride parameters or rely on foot
contact information extracted from motion capture data. Further-
more, these methods are generally limited to learning relatively
short motion clips, which significantly constrains their expressive
capabilities. To better navigate these trade-offs, we complement
physics-based full-body methods by developing a controller for a
simplified model in an auto-regressive manner, yielding significant
improvements in robustness, sample efficiency, generalizability, and
training speed.
In this paper, we present a general reinforcement learning (RL)

framework for acquiring robust and user-friendly locomotion strate-
gies for a single-rigid-body (SRB) character model, trained directly
from long and unstructured datasets. Unlike prior methods, our
approach employs a fully data-driven learning process for footstep
planning, enabling the model to predict future states based solely on
its current state. This eliminates the need for human intervention
and removes dependence on full-body motion capture data during
inference.

Our framework is capable of learning long-term, unified motion
skills rather than being limited to short-term, isolated motion clips.
This flexibility allows for seamless integration with various motion
generation techniques for downstream tasks. To reconstruct high-
quality, dynamically realistic full-body motions, we also introduce
a novel space-time optimization method that leverages dynamic
properties of the SRB model, such as momentum and center of mass
(COM) position.

Experimental results demonstrate that our trained controller con-
sistently generates high-quality motions across diverse terrain and
interaction scenarios without requiring additional training. More-
over, it can accurately and smoothly track the output of a kinematic
motion generator, producing motions that are both physically plau-
sible and highly dynamic. All capabilities are achieved using a single
policy trained without any prior task-specific information. These
results underscore the potential of our approach for applications in
gaming and virtual reality.
In summary, our main contributions are as follows:

• We propose an SRB controller that learns locomotion skills
from unstructured data without relying on heuristic rules or
fixed foot planning, enabling zero-shot adaptation to diverse
environments and previously unseen motions.

• We introduce a real-time full-body motion generator that
enables physically realistic responses, while effectively elimi-
nating foot skating and noise.

• Our approach generalizes well across multiple downstream
tasks, and produces high-quality motions.

2 Related Work
We review prior work in character animation and control, focus-
ing on two key categories relevant to our approach: physics-based
motion controllers and physics-informed motion generators. These
research directions have significantly advanced the development of
physically plausible, generalizable, and natural character animation.

2.1 Physics-Based Motion Control
To ensure the physical realism of generated motions, a straightfor-
ward approach is to construct a full physical model of the character
and control its behavior through physical simulation. Early efforts
relied on rule-based controllers to achieve stable locomotion [Coros
et al. 2008; Lee et al. 2010; Yin et al. 2007]. Over time, techniques
such as spacetime optimization [Mordatch et al. 2012; Witkin and
Kass 1988], model predictive control [Hämäläinen et al. 2015; Liu
et al. 2010; Macchietto et al. 2009; Mordatch et al. 2010; Tassa et al.
2012], and reinforcement learning [Levine and Koltun 2013; Yin
et al. 2021] were introduced to support increasingly complex move-
ments. However, these methods often depend on carefully crafted
objective functions and extensive parameter tuning, which can limit
their practicality for complex scenarios and general-purpose motion
generation.

With the advent of deep reinforcement learning (DRL), researchers
have demonstrated that simulated characters can effectively imi-
tate motion capture data [Peng et al. 2018a, 2017], often with only
simple reward function designs. By employing pose reconstruction
rewards [Fussell et al. 2021; Peng et al. 2018a; Won et al. 2020], or
leveraging techniques such as behavior cloning [Luo et al. 2023;
Truong et al. 2024; Won et al. 2022b; Wu et al. 2025] and Generative
Adversarial Imitation Learning (GAIL) [Ho and Ermon 2016; Xu and
Karamouzas 2021; Xu et al. 2023], characters can exhibit fluid and
stylized locomotion [Bergamin et al. 2019; Peng et al. 2022, 2018b;
Tessler et al. 2024, 2023; Yao et al. 2022, 2024], as well as complex
human-object interactions [Hassan et al. 2023; Kim et al. 2025; Lee
et al. 2022; Wu et al. 2024], and human-scene interactions [Pan et al.
2025; Rempe et al. 2023; Tevet et al. 2024].
While the motions generated by these methods adhere to phys-

ical principles, the high degrees of freedom inherent in full-body
movements often require several days of training. Moreover, policies
trained in fixed environments generally struggle to transfer directly
to novel scenarios or terrains. To address this limitation, some stud-
ies have introduced adaptation mechanisms, such as auxiliary helper
branches, to fine-tune the policy for new environments [Won et al.
2022b; Xu et al. 2023]. However, these methods still require addi-
tional environment-specific training.

Although recent universal controllers [He et al. 2024; Tessler et al.
2024, 2025] achieve locomotion over varied terrains, complex hu-
man–object interactions, and multiple control modes, they typically
require large motion datasets, detailed terrain models, and addi-
tional training. In contrast, our method is sample-efficient, trained
only on flat terrain, and fast to train. Additionally, our approach
retains the inherent flexibility of kinematic-based methods to syn-
thesize stylized motions that may deviate from rigid-multi-body
constraints while preserving visual plausibility.
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2.2 Kinematic and Physics-Informed Motion Generation
An alternative to physics-based character animation is the use
of data-driven methods to generate kinematic motion. These ap-
proaches span a broad range—from early techniques such as finite
state machines [Dosé and Cachelin 2016; Lee et al. 2002; Levine et al.
2011; Safonova and Hodgins 2007; van de Panne 2014] and statistical
models [Chen et al. 2009; Levine et al. 2012; Min et al. 2009], to more
recent neural architectures including Recurrent Neural Networks
(RNNs)[Zhang and van de Panne 2018; Zhao et al. 2018], Transform-
ers[Lu et al. 2024; Petrovich et al. 2021; Zhang et al. 2023b; Zhou
et al. 2024], and generative models such as VAEs [Ling et al. 2020a;
Qin et al. 2022], diffusion models [Alexanderson et al. 2023; Chen
et al. 2024; Tevet et al. 2023; Xin et al. 2023; Zhang et al. 2024, 2023a;
Zhou et al. 2024], and GANs [Li et al. 2022; Raab et al. 2023]. These
methods learn plausible motion distributions from motion capture
data and are widely used in various downstream tasks. However, due
to the absence of integrated physics simulation, these approaches
often require post-processing steps to mitigate artifacts and enable
physical interactions. For example, Holden et al. [2020, 2017] use an
inverse kinematics solver to address issues such as foot sliding and
floating. However, these techniques typically constrain only foot
movement. Other researchers incorporates physics-inspired loss
functions to impose constraints on the network [Yi et al. 2022; Yuan
et al. 2023]. However, they are often designed such that corrective
torques can act on the root joint, limiting the model’s ability to
capture essential physical principles—such as center of mass (COM)
dynamics and swing foot behavior—which are critical for producing
adaptive motion.
Our method also falls under the category of kinematic motion

generators. However, unlike the aforementioned approaches, it inte-
grates accurate physics simulation based on single-rigid-body (SRB)
dynamics. Among previous works, the methods proposed by Kwon
et al. [2023, 2020] also utilize the SRB character model, making them
the most closely related to our approach. This model generates phys-
ically plausible full-body motions, where environmental variations—
such as external pushes or uneven terrain—naturally influence the
character’s behavior through SRB simulation, leading to more re-
alistic and adaptive motion. In particular, [Kwon et al. 2023], like
our approach, combines online quadratic programming with offline
reinforcement learning to achieve real-time performance. However,
our approach differs in that it is trained on long, unlabeled motion
datasets and employs a single policy capable of tracking a wide
range of motions.

3 Overview
As illustrated in Figure 2, our SRBtrack framework consists of two
main components: the SRB simulation module (bottom of the figure)
and the full-body motion generation module (top of the figure).
These two parts are trained independently.

In the SRB simulation module, a motion tracking policy is trained
to control a simulated SRB character to follow a reference SRB
motion extracted from a large and unstructured full-body motion
dataset. The reference SRB motion is represented using a simplified
set of features: the center of mass (COM) position, pelvis orientation,
and the position and orientation of the midpoint of each feet. At

each time step, the SRB character observes its current state s𝑡 as well
as a short window of future reference SRB states, s𝑡+1:𝑡+𝑇 . These
future reference states serve as control signals to guide the character
toward the desired motion. During training, these future states are
sampled directly from the reference SRB motion. At inference time,
they can either be extracted from arbitrary full-body motion clips
or produced by a kinematics-based motion generator. Based on the
current internal state and future conditions of the SRB character, the
policy is implemented as a neural network that outputs an action
through different action heads. The action includes a target transfor-
mation, a generalized velocity, desired footsteps, and target contact
states, which will be detailed in Section 4. A quadratic programming
(QP) solver is then used to compute the contact forces required to
realize the desired acceleration in a physically plausible way. The
desired footsteps are first projected onto the terrain surface to de-
termine the contact points where these forces will be applied. The
resulting contact forces, together with any external disturbances,
are then fed into the simulator to generate the character’s motion
(Section A.3 of the Supplementary Material).

In the full-body motion generation module, a conditional varia-
tional autoencoder (CVAE) is used as the full-body motion predictor.
The predictor is trained on pairs of reference full-body motions and
corresponding ground-truth SRB trajectories. Since the reference
SRB trajectories used during the training of the SRB character con-
troller are not physically accurate, we first generate ground-truth
SRB trajectories by tracking the reference SRB motions through
simulation. These ground-truth SRB and full-body trajectories are
then used to train the full-body motion predictor (Section 5.1).
At each time step during runtime, the predictor observes the

current SRB state s𝑡 and a history of past states s𝑡−𝜏 :𝑡−1 to predict
the future full-body motion s𝑓 𝑢𝑙𝑙

𝑡 :𝑡+𝑊 . The predicted motion is refined
by the momentum-mapped space-time optimizer M, resulting in
a smooth and physically plausible trajectoryM(s𝑓 𝑢𝑙𝑙

𝑡 :𝑡+𝑊 ). The first
frame of the optimized motion,M(s𝑓 𝑢𝑙𝑙𝑡 ), is rendered at the current
time step 𝑡 (Section 5.2).

4 SRB Tracking Controller

4.1 SRB Character and Frames
Our SRB character follows a design similar to that proposed by
Kwon et al. [Kwon et al. 2023]. The SRB model approximates the
physical properties of a full-body articulated character using a box-
shaped rigid body that inherits the same mass and composite inertia
as the original character in its default posture. To model foot-ground
interaction, each foot is equipped with five contact points: two at
the big toe and little toe, two at the heel, and one at the center of
the foot.
We first define three reference frames to represent the state of

the SRB character. The SRB frame is attached to the center of mass
of the SRB character. The forward-facing SRB frame shares the
same origin as the SRB frame, but its x-axis is aligned with the
horizontal projection of the SRB’s forward direction, and its z-axis
is aligned with the global vertical axis. The projected SRB frame
is defined by vertically projecting the origin of the forward-facing
SRB frame onto the ground or terrain surface.
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Fig. 2. Overview of our SRBTrack framework. The SRB tracking policy, trained using a combination of reinforcement and supervised learning on flat terrain,
generalizes to uneven terrain at inference. A QP solver computes contact forces from predicted actions, while a full-body motion predictor outputs future
states. The states are refined via momentum-mapped space–time optimization for rendering.

4.2 Reinforcement Learning Formulation
State. The state vector s ∈ R25 of each frame is composed of the

following components.

• The center of mass state s𝑜 ∈ R13 consists of the height,
orientation, and generalized velocity of the SRB character’s
center of mass, all expressed in the projected SRB frame. The
orientation is represented using two axes, commonly referred
to as the 6D representation [Zhou et al. 2019].

• The foot state s𝑗
𝑓
∈ R4 ( 𝑗 ∈ {left, right}) consists the 3D

position of each foot expressed in the forward-facing SRB
frame, and the 1D orientation of each foot around the local
vertical z-axis of forward-facing frame.

• The foot contact state s𝑐 ∈ R4 is a one-hot 4D vector that
encodes the four possible combinations of binary contact
states for the left and right feet with the ground.

Action. The action vector a ∈ R22 consists of the following com-
ponents.

• The desired delta transformation of center of mass a𝑝 ∈
R6 represents the local change in position and orientation,
expressed in the SRB frame. It is applied to the current pose
to compute the desired pose for the next frame.

• The desired velocity of center of mass a𝑣 ∈ R6 refers to
the desired generalized velocity of the center of mass of the
SRB character expressed in the SRB frame.

• The desired foot state a𝑗
𝑓
∈ R3 ( 𝑗 ∈ {left, right}) specifies

the desired 2D planar landing position of each foot, along
with the desired 1D rotation around the vertical axis (z-axis),
all expressed in the projected SRB frame.

• The desired feet contact state a𝑐 ∈ R4 is a one-hot 4D
vector which predicts the desired feet contact state fot the
next time step.

Reward. The reward function 𝑟𝑡 at each step 𝑡 is configured as
below:

𝑟𝑡 = 𝑤𝑠𝑟𝑠𝑡 −𝑤𝑝𝑟
𝑝
𝑡 −𝑤𝑒𝑟𝑒𝑡 −𝑤𝑐𝑟𝑐𝑡 , (1)

where 𝑟𝑠𝑡 is the alive reward given when the episode continues,
encouraging the character to maintain a stable and upright pos-
ture. An early termination (ET) condition is applied to end episodes
when the character becomes unstable. The posture penalty r𝑝𝑡 en-
courages the simulated SRB character to follow the COM trajectory
of the reference SRB motion. The end-effector penalty r𝑒𝑡 guides
the policy to generate accurate positions and orientations of the
feet. The contact penalty r𝑐𝑡 ensures that the generated foot contact
states match those of the reference SRB motion. A more detailed
description of the reward functions is provided in Section A.1 of the
Supplementary Material.

4.3 Policy
Unlike the approach in [Kwon et al. 2023], the feet state and contact
states in our method are generated autoregressively by the policy.
A key distinction of our approach lies in the policy architecture,
which uniquely combines the advantages of kinematics-based mo-
tion supervision with RL-based control. This design also enhances
training stability and sample efficiency compared to conventional
RL methods.
The SRB tracking policy consists of an encoder, a decoder, and

three action heads (Figure 2). The encoder takes as input the cur-
rent state s𝑡 and a short sequence of future reference states s𝑡+1:𝑡+𝑇 ,
where𝑇 denotes the window size. The decoder outputs an intermedi-
ate feature u𝑡 , which is then passed to the action heads. Supervising
the outputs of the action heads allows this data-driven approach to
avoid handcrafted foot trajectories and contact logic.

Specifically, the first action head predicts the desired delta trans-
formation of the center of mass a𝑑𝑡 , the desired velocity of the center

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



SRBTrack: Terrain-Adaptive Tracking of a Single-Rigid-Body Character • 5

of mass a𝑣𝑡 , and the desired base feet state ã𝑓𝑡 . The second head pre-
dicts the residual feet state Δa𝑓𝑡 , which is added to the base state to
compute the final desired feet state: a𝑓𝑡 = ã𝑓𝑡 + Δa𝑓𝑡 . The third head
predicts the discrete desired foot contact state a𝑐𝑡 . All foot-related
outputs are supervised using a dedicated loss function.
The feet of the SRB character are modeled as a set of massless

contact points. Due to inherent differences in dynamics between the
SRB character and a full humanoid, precisely replicating full-body
footstep trajectories is not feasible. Instead of enforcing exact track-
ing of reference foot positions, we use the following loss function to
guide the SRB character to adjust its foot targets in a way that better
aligns with its simplified dynamics, while still reasonably following
the reference motion:

L = 𝑤 𝑓 L𝑓 +𝑤𝑟L𝑟 +𝑤𝑐L𝑐 . (2)

Here, the feet state loss L𝑓 penalizes the difference between the

desired base feet state ã𝑓𝑡 and the target feet state ŝ𝑓
𝑡+1. The reg-

ularization loss L𝑟 constrains the magnitude of the residual feet
state vector accounting for model discrepancies. The contact loss
L𝑐 is defined as the cross-entropy (CE) loss between the predicted
contact logit and the ground-truth discrete contact label. During
training, this loss L is used as an auxiliary objective alongside the
RL reward, forming a joint optimization objective that balances mo-
tion tracking performance with accurate footstep planning. A more
detailed description is provided in Section A.2 of the Supplementary
Material.

4.4 QP Problem
We compute physically consistent contact forces by formulating a
QP problem. Desired COM acceleration is derived via a PD controller
using pose and velocity errors. The policy predicts the desired pose,
velocity, and foot landing states at each timestep. The predicted foot
positions are first projected onto the terrain surface. To prevent foot
penetration, they are further adjusted to the nearest safe region if
they fall near sharp features such as steps or edges. A quadratic
programming (QP) solver then optimizes the COM acceleration and
the contact forces at these locations. The optimization minimizes
both the acceleration tracking error and themagnitude of the contact
forces, subject to the single-rigid-body dynamics constraint. Contact
forces are parameterized using friction cone basis vectors, with a
non-negativity constraint. The optimized contact forces are then
passed to the simulator to advance the SRB state. Further details are
provided in Section A.3 of the Supplementary Material.

5 Full-body Motion Generation

5.1 Full-body Motion Predictor
After training the SRB policy, we collect ground-truth SRB trajec-
tories by tracking the reference SRB motions used during training.
These ground-truth trajectories closely follow the reference but
exhibit slight tracking errors that accumulate over time. We ap-
ply a simple refinement process to correct the root trajectory and
remove foot sliding [Kwon et al. 2023]. The resulting refined full-
body trajectories, paired with their corresponding ground-truth SRB
trajectories, serve as supervision to train a conditional variational

autoencoder (CVAE) capable of reconstructing full-body motion
from arbitrary SRB motion inputs. The model takes as input a his-
tory sequence of SRB motion and predicts the current and future
full-body states over a short horizon. The input of the full-body
motion predictor s𝑡−𝜏 :𝑡 ∈ R(𝜏+1)×25 is the history sequence of SRB
states, where 𝜏 = 10. Each SRB state within the interval [𝑡 − 𝜏, 𝑡] is
concatenated along the temporal dimension. The predictor outputs
the current and near-future full-body states over a short horizon.

Full-body state. The predicted full-body state s𝑓 𝑢𝑙𝑙𝑡 ∈ R214 con-
sists of the character’s pose x ∈ R59 (represented using Euler an-
gles), its first and second time derivatives ¤x and ¥x, the center of mass
(COM) position x𝐶𝑂𝑀 ∈ R3, the generalized momentum h ∈ R6,
and the positions, velocities and contact state of the four contact
points (toe and heel for each foot) resulting in a total of 28 dimen-
sions. To ensure coordinate-frame independence, all pose-related
vectors are expressed relative to the simulated SRB’s pose and gen-
eralized velocity. The positions and velocities of the full-body feet
are encoded relative to the SRB’s feet. Instead of directly predict-
ing the full-body momentum h, we train the network to learn the
error between the full-body momentum and the SRB momentum.
Further architectural and training details of the full-body predictor
are provided in Section B of the the Supplementary Material.

5.2 Momentum-mapped Space Time Optimization
The full-body motion predictor provides an effective and efficient
mapping from SRB states to full-body poses. However, due to the
highly abstracted state representation of the SRB character, the
resulting full-body pose from the predictor often exhibits noise and
lacks physical realism. To address this, we propose momentum-
mapped space-time optimization (MMSTO), a novel reconstruction
method that improves motion quality and physical plausibility of
the predictions s𝑓 𝑢𝑙𝑙

𝑡 :𝑡+𝑊 from the full-body motion predictor through

a space-time optimizer M. The first frame x0 = M(s𝑓 𝑢𝑙𝑙𝑡 ) of the
optimized full-body motion is used for rendering the current step.

The space-time optimization minimizes the cost function 𝐸𝑚𝑚𝑠𝑡𝑜

using an L-BFGS solver:

𝐸𝑚𝑚𝑠𝑡𝑜 (x) = 𝑤1

3∑︁
𝑖=−1
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(a) Target navigation

(b) Joystick control

Fig. 3. Interactive character control

where x = (x−2, x−1, · · · , x4) is the full-body poses over the plan-
ning horizon, represented in the world frame. The first two poses,
x−2 and x−1, correspond to past states and are fixed, while the
remaining poses are treated as optimization variables.
The first two terms are regularization terms that encourage the

solution to stay close to the desired full-body velocity ¤̄x and desired
full-body acceleration ¥̄x, respectively. The time-derivative ¤x is cal-
culated via forward differentiation: (x𝑖+1 − x𝑖 ) /𝑑𝑡 . Acceleration ¥x𝑖
is computed as ¥x𝑖 = (−x𝑖−1 + 2x𝑖 − x𝑖+1) /𝑑𝑡2. All the desired val-
ues are obtained by transforming the full-body predictor’s outputs
into world coordinates using the SRB coordinate system. Instead of
deriving the desired velocity and acceleration by differentiating the
desired pose, these values are predicted directly to enhance robust-
ness to prediction noise. The third term encourages the full-body
poses to be, on average, similar to the desired pose. Using individual
pose matching can transfer noise present in the desired poses to the
generated poses, so the average is used instead.

The fourth term measures the difference between the velocity of
the 𝑘𝑡ℎ contact point (toe and heel) of the 𝑗𝑡ℎ foot

(
¤C𝑗𝑘 (xi)

)
, and

its desired velocity ¤̄C𝑖 𝑗𝑘 . The next term measures the error between
the average position of each contact point and the average of its
corresponding desired positions.

The sixth term minimizes the error between the desired momen-
tum h̄𝑖 , computed from the SRB’s momentum, and the full-body
momentum J𝑚,𝑖 ( ¤x𝑖 ). The momentum Jacobian J𝑚,𝑖 relates the full-
body’s generalized velocity ¤x𝑖 to the generalized centroidal momen-
tum. The next termminimizes the average error between the desired
COM positions, derived from the SRB’s COM trajectory, and the full-
body COM positions. Due to inherent dynamic differences between
the SRB and the full body, some discrepancy between their momenta
and COM positions are inevitable [Kwon et al. 2023]. These errors

are predicted by the full-body predictor and used to compute the de-
sired full-body momentum h̄𝑖 and the desired COM position x̄𝐶𝑂𝑀

𝑖
by correcting the SRB’s momentum and COM position.

Since soft constraints are used to guide foot placement and COM
position during optimization, the resultingmotionmay exhibit slight
foot sliding or COM errors. These artifacts are corrected through a
retargeting process using an analytic IK solver [Kovar et al. 2002b].

6 Experiments
We use Clarabel to solve the QP problem [Goulart and Chen 2024]
and MuJoCo for forward dynamics [Todorov et al. 2012], both run-
ning at 120 Hz. All experiments are conducted using an Intel(R)
Core(TM) i9-13980HX CPU and an NVIDIA GeForce RTX 4080 Lap-
top GPU. Our controller can generate full-body motion in real-time.
We refer to Table 1 for related runtime statistics.

The training dataset consists of three unstructured locomotion
sequences (walking, running, jumping) from LaFAN [Harvey et al.
2020], augmented with mirrored versions and a synthesized stand-
ing motion, with a total duration of approximately 25 minutes. The
policy is trained using Proximal Policy Optimization (PPO) [Schul-
man et al. 2017] implemented in PyTorch [Paszke 2019], with 32
parallel environments. The learning rate is exponentially annealed
from 1𝑒 − 4 to 1𝑒 − 5 over the first 15 million steps of the total 30 mil-
lion training steps (approximately 7 hours). The full-body predictor
is trained using the RAdam [Liu et al. 2019] with 𝛽1 = 0.9, 𝛽2 = 0.999
and a fixed learning rate 2𝑒 − 3. Further details on the training setup
are provided in Section C of the Supplementary Material.

6.1 Tasks
This section showcases SRBTrack’s generalization capability by
integrating it with kinematics-based motion planners. Unlike task-
specific controllers or end-to-end methods, SRBTrack enables plug-
and-play use of existing planners without adaptation, tracking their
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(a) Walk on a slope (32 degrees) (b) Sideways jump on rough terrain

(c) Run on hill terrain (d) Jump on pyramid terrain

Fig. 4. Adaptation for uneven terrain.

output motions online and requiring no retraining. To validate this,
we choose two representative planners: MotionVAE [Ling et al.
2020b], a data-driven motion controller based on a CVAE model,
and Motion Graph [Kovar et al. 2002a], a classical graph-based
controller that enables kinematic motion synthesis via clip transi-
tions. Leveraging existing implementations, we demonstrate two
downstream tasks: target navigation and joystick control. For visual
demonstrations of these tasks, as well as additional results on un-
even terrain adaptation, external perturbations, and unseen motion
tracking, please refer to the supplementary video.

Target navigation. We use the original MotionVAE implementa-
tion to generate future motion trajectories that guide the character
to sprint toward randomly placed targets. Notably, MotionVAE pro-
duces motions at approximately 5.5𝑚/𝑠 , whereas the fastest motion
in our SRB training set—running— reaches only around 3.5𝑚/𝑠 . De-
spite this speed mismatch, our method successfully generalizes to
follow the trajectory and reach the target, as shown in Figure 3(a).

Joystick control. We implement joystick control using Motion
Graph, where the character’s COM velocity is guided to match a
target 2D velocity on the ground plane, as shown in Figure 3(b). This
Motion Graph can also be extended to other tasks such as speed
control, motion switching, and locomotion over uneven terrain.

Uneven terrain. We construct three challenging uneven terrains–
hill, rough, and pyramid—to demonstrate the robustness of our
controller, as shown in Figure 4. Despite being trained only on flat
terrain and without using scene observations, it successfully tracks
reference motions on these unseen surfaces. We also test sloped
terrains with constant inclinations, where the controller handles
walking and jumping on slopes over 30◦ and runs on slopes around

Table 1. Statistics for generating locomotion on a flat ground. Average
computation time for generating one second of final motion is measured
across the entire training dataset.

System Component Time Cost

Ours

Policy Output 0.036s
Environment Step(QP+simulation) 0.159s
Full-body Predictor Output 0.012s
MMSTO(with Δ) 0.806s
Total 1.013s

20◦, showing strong adaptability to real-world conditions. For addi-
tional scenarios, such as walking on stepping stones and crouching
to avoid an obstacle, please refer to the supplementary video. On
terrains with sharp or discontinuous edges, such as pyramid-shaped
surfaces, we allow minor swing-foot penetration as a practical trade-
off: while it slightly compromises physical accuracy, it effectively
suppresses jitter and ensures smoother motion when the foot passes
close to these edges.

External perturbations. We further evaluate the controller’s ro-
bustness under strong external perturbations. It maintains balance
while standing under 650𝑁 pushes, and remains stable during walk-
ing, running, and jumping under forces over 1000𝑁 . We also sim-
ulate interactive scenarios with thrown balls hitting the character,
where the controller remains stable without falling even on chal-
lenging terrains. These results demonstrate its ability to handle
strong pushes and collisions in realistic conditions. When the policy
attempts to recover from external disturbances, artifacts such as
leg intersections may occur. This happens because both the swing
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(a) Playing volleyball on flat terrain (b) Playing basketball on rough terrain

(c) Fighting on hill terrain (d) Dancing on pyramid terrain

Fig. 5. Tracking unseen motions across diverse terrain.

foot positions planned by the policy and the character’s foot posi-
tions computed in a data-driven manner lack explicit self-collision
constraints. In extreme cases where disturbances exceed the con-
troller’s stabilization capacity, our system transitions seamlessly
to a ragdoll fall mode, with each joint controlled by low-gain PD
torques to produce natural falling motions. This design also allows
future integration of full-body simulation–based recovery strategies
to return to the SRB mode. Further details are provided in Section
C.4 of the Supplementary Material.

Unseen motion tracking. We further assess the generalizability of
the SRBTrack framework by tracking a variety of full-body motions
not seen during policy training. As shown in Figure 5, we select
representative samples from the LaFAN dataset [Harvey et al. 2020],
including volleyball, basketball, fighting, and dancing. These mo-
tions involve complex full-body coordination that goes well beyond
the basic locomotion patterns used during training. Despite this
gap, our controller achieves high-quality tracking of these unseen
motions and maintains robustness under challenging conditions
such as uneven terrain and external disturbances. Our framework is
also applied to the kinematic Text2Motion generator MoMask [Guo
et al. 2023], where it effectively removes artifacts such as foot sliding
and enables terrain adaptation. The supplementary video presents
visual results.

6.2 Comparison
To quantitatively evaluate robustness, we compare the balance
maintenance rates of characters controlled by our method, Adapt-
SRB [Kwon et al. 2023], and FFMLCD [Kwon et al. 2020] in push
experiments conducted across 20 evenly sampled motion phases
of a Sprint reference motion. External forces ranging from 200 N
to 3000 N are applied to the character’s root from the side or back,
parallel to the ground, for 0.2 seconds. Each force magnitude is
tested 10 times per phase.
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(a) Push from side
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(b) Push from back

Fig. 6. Robustness evaluation under external pushes. Solid line: Maximum
force where the character consistently maintains balance. Dotted line: Min-
imum force where the character consistently falls. Circles: Success rate
(out of 10 trials) for intermediate forces; size indicates the proportion of
successful trials.

As shown in Figure 6, our method achieves significantly higher
tolerence in both directions. Unlike AdaptSRB which relies on refer-
ence contact timing and manual motion phase adjustments, our pol-
icy learns to adapt foot placement and contact timing automatically
through reinforcement learning and data-driven footstep modeling.
FFMLCD, on the other hand, depends on nonlinear optimization per
half gait cycle, limiting its responsiveness under strong perturba-
tions.
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6.3 Ablations
To demonstrate the effectiveness of our full-body reconstruction
method, MMSTO, we perform an ablation study comparing two
approaches: the fullbody motion predictor with conventional IK
and the predictor combined with MMSTO. As shown in the supple-
mentary video, conventional IK produces noisy results, particularly
during foot landings, where abrupt pose changes occur due to sensi-
tivity to contact variations. Moreover, since the predictor is trained
without using any recovery motions, the IK-based approach fails
to generate natural responses under external disturbances. In con-
trast, MMSTO produces smooth, physically plausible, and natural
motions, even under challenging conditions. The supplementary
video provides visual comparisons, along with additional ablations
comparing the VAE and MLP architectures for the full-body mo-
tion predictor, and evaluations of SRBTrack outputs versus motion
planner outputs.

7 Conclusion
In this paper, we introduced a robust, terrain-adaptive tracking
framework based on a single-rigid-body (SRB) character. By lever-
aging a large motion dataset and a structured policy architecture,
our method achieves strong zero-shot generalization to unseen ter-
rains and external disturbances—without requiring environment
observations or explicit modeling of external forces.

Despite being trained solely on locomotion behaviors and using
a simplified SRB model with no articulated joints, our framework
demonstrates strong generalization. SRBTrack accurately recon-
structs diverse full-body motions, including complex upper-body
styles. This is made possible by our momentum-mapped space–time
optimization (MMSTO) module, which reconstructs full-body mo-
tion from SRB trajectories. While physics-based methods often ex-
hibit superior performance in complex environment, they require
terrain modeling, environment observations, extensive demonstra-
tions, and costly training. In this sense, our method offers a prag-
matic alternative by augmenting kinematic motion synthesis with
physics-based simulation— providing a workable solution until full-
body simulation approaches achieve the robustness required for
deployment in real-world applications such as games. It retains
the visual fidelity of kinematic methods while adding the dynamic
interaction capabilities of physics-based models.
While SRBTrack performs well under a wide range of condi-

tions, there is still room for improvement. Currently, gait responses
to perturbations are entirely policy-driven, and in highly out-of-
distribution states, recovery motions can appear noisy or unnatural.
This could be addressed by incorporating recovery examples for dis-
turbances into the training dataset or introducing phase-conditioned
constraints [Holden et al. 2017; Starke et al. 2022, 2020]. Addition-
ally, our current CPU-based QP solver poses a training bottleneck.
Future research directions include using differentiable rigid-body
dynamics and a GPU-accelerated QP solver to enhance training
speed and scalability. We also aim to explore full-body dynamics
controllers that use the SRB policy as a short-term motion planner
and to exploit redundant degrees of freedom for secondary tasks.
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